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Abstract. The differential evaluation (DE) algorithm is an evolution-
ary algorithm. It is a popular metaheuristics that efficiently solved var-
ious complex optimization problems. This paper proposed modification
in DE, motivated by the flying pattern of peregrine falcon while preying
and named as peregrine preying pattern based DE algorithm (P3DE). In
P3DE, the flying pattern of peregrine improves the exploration potential,
while preserving the novel exploitation potential of the DE. The compe-
tence, precision, robustness and trustworthiness of the projected P3DE
algorithm is analyzed while simulating it over 12 composite benchmark
functions of diverse characteristics. The results of P3DE compared with
DE and Artificial Bee Colony algorithm to prove its competitiveness for
selected problems.
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1 Introduction

Storn and Price [16] developed a simple and fast algorithm in year 1995 namely
Differential Evolution. The fundamental concept in DE is to make use of the vec-
tor differences for perturbing vector solutions. DE is a stochastic meta-heuristic.
DE fits into the class of Evolutionary Algorithms (EAs). A number of charac-
teristics like trial vector development procedure (discussed in section 2) make
use of the information about direction and distance from present population
to engender a fresh trial vector is significantly contrasting with other existing
evolutionary strategies. In case of DE the mutation is applied first and then
crossover applied while in all other EAs, most of the time a trial vector gen-
erated using crossover in first step and then one offspring produced using the
mutation operation.

DE is very popular among researchers specially working in the field of op-
timization as it has a number of advantages over other population-based algo-
rithms. But similar to other stochastic algorithms DE also has some drawback
and researchers are frequently working to enhance the efficiency and reliability
of this evolutionary algorithm. A few recent and most popular variants of DE
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are discussed in [2] with appropriate applications. DE performs better than the
many other competitive algorithms like Genetic Algorithm (GA) [5, 9] and the
Particle Swarm Optimization (PSO) [8] for considered numerical benchmarks
[28] and many more new algorithms [17]. DE has proved its superiority over
other algorithm in various applications of science, management, engineering and
technology like chemical engineering [13], mechanical engineering design [18], ma-
chine intelligence, pattern recognition [15], robot path planning [22] and signal
processing [3]. Now a days DE algorithm is one of the most accepted strategies
in area of engineering optimization, machine intelligence and cybernetics.

The evolution of population in DE is driven by variation and selection. The
deviation process is absolutely accountable for the exploration of different areas
of the probable search region and exploitation of the finest solution is done by
the process of selection. A number of new study shows that sometimes DE is
not able to achieve global optimum [12]. In this paper, to set up an appropriate
trade-off between diversification and convergence of the population in DE, a
natural phenomenon of specific flying pattern exhibited by peregrine falcon while
preying is implemented with DE and named as peregrine preying pattern based
DE algorithm (P3DE).

2 Overview of DE Algorithm

The general notation for DE is: DE/x/y/z, here DE stands for Differential
Evolution, x represents the strategy for selection of target vector, number of
differential vector used perturbation of x denoted by y, and z represent the
crossover technique employed. Based of selection of x, y and z [16] various variant
of DE are available. The most popular DE schemeDE/rand/1/bin and also used
in this paper. It select the target vector randomly and use binomial crossover
with one differential vector. The DE recognised among researchers as it is very
simple, robust, easy in implementation and has wide class of applicability to real
world problems [21].

2.1 Mutation

The mutation operator generate a trial solution by doing some random changes
in trial solution. The working of mutation operator to engender a trial solution
ui from the parent solution xi is defined as follow:

– Select a target vector xi1 (g) in such a way that i and i1 are not same.
– Identify two random solutions, xi2 and xi3 in such a way that i, i1, i2 and

i3 are different.
– The trial vector computed by mutating target vector using equation 1

ui(g) = xi1 (g) + F × (xi2(g)− xi3 (g)) (1)

where mutation scale factor F ∈ [0, 1] control the escalation of the differential
variation [4].
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2.2 Crossover

DE apply uniform crossover to engender offspring x′

i(g) using parent vector,
xi(g) and the trial vector, ui(g) as follows:

x′

ij(g) =

{

uij(g), if j ∈ J

xij(g), otherwise.
(2)

where a set of crossover points denoted by J , jth element of xi(g) vector denoted
by xij(g). It is supposed that if j ∈ J , the trial parameter is selected from the
mutant uij(g).

2.3 Selection

The selection operator decides between trial vector and target vector. It decides
the individual to compute the trial vector for the mutation and precisely choose
the best for the next generation, between the trial vector and their predecessors
based on their fitness value. If fitness of trial vector is lower than target vector
then it takes over from the target vector for next generation. Contrarily, the
target vector xi(g) remains there for next generation i.e. best fitted individual
selected for next generation.

xi(g + 1) =

{

x′

i(g), if f(x′

i(g)) > f(xi(g)).

xi(g), else.

In order to mend the results of basic DE, researchers have proposed a number
of variants of DE. It has been observed by Storn and Price in [16] that the best
suitable range for value of F is [0.5, 1] and [5D, 10D] is the most appropriate
range of the value of NP , where, considered problem is of D dimension.

Most of the researchers focused on identification of best suitable value for
control parameters (F and CR) but very few researchers tried to identify the best
suitable size of the population (NP ) for performance enhancement. New variants
of DE proposed by Teo [26] and Sharma et al. [19] based on the concept of self
adaption in populations and dynamic scaling. They suggested self adaption in
order to avoid manual parameter setting. Some new strategies also incorporated
in DE like: opposition based strategy [11], fitness based strategy [20], convex
mutation [23], memetic search [10] and position update [6]. Some modifications
in population selection suggested by researchers [24].

3 Peregrine Preying Pattern based DE Algorithm

The peregrine falcon is one of the most intelligent raptor from the falconidae
family of birds that hunts and feeds on rodents and other animals. Peregrine
falcons has two important skills, first is flight with speed over 200 mph and visual
sharpness that are very helpful while attacking their prey. Peregrine falcons are
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found worldwide. The peregrine follows a particular path while chasing prey and
it is similar to logarithmic spiral. The studies reveal that peregrine falcons follow
a logarithmic spiral path to attack their prey [14, 1]. The peregrine flees along a
logarithmic spiral route to avoid the conflict between vision and aerodynamics
[27].

This paper presents an improved mutation strategy inspired by the path
followed by peregrine falcon during attack on prey i.e. logarithmic spiral. It is a
self-similar spiral curve which formed by peregrine falcon while preying [1]. As
the solution search process of DE algorithm is highly depends on a combination
of randomly selected vectors and a difference vector (refer equation 1). Hence,
there are more chances to omit the true solution in case of high value of scaling
factor F and the difference vector. Therefore, here a new approach to decide
scaling factor proposed, which helps the current best solution in the swarm to
exploit the potential solutions in its vicinity.

The equation of logarithmic spiral is shown in equation 3. It is the locus
of points going apart from a centre point with a invariable speed besides a line
which rotates with fixed angular velocity proportional to the positions with time
of a point. Unvaryingly, in polar coordinates (r, θ) as illustrated by the equation
3 [1].

r = a× ebθ (3)

Here, a and b are real numbers while e denotes the base of natural logarithms.
The parameter a control the turning of the spiral and the distance between
consecutive turnings managed by b as shown in Figure 1.

Fig. 1: Logarithmic spiral [1]

In P3DE, the best solution in the current pool of solution is permitted to
modernize their position adaptively. The new mutation approach is developed
by taking inspiration from the logarithmic spiral as shown in equation 4.

ui(g) = xi1 (g) + FP3DE × (xi2 (g)− xi3 (g)) (4)

where, FP3DE = 2× sign× U(0, 1)× (1−
Iter

T I
)× e

sin(Iter)
Iter (5)
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Here, Iter is the counter for search iteration, TI represents total number of
iterations, sign is the addition or subtraction sign which depends on the fitness
of the new solution. The scale factor is calculated using equation 5 which is
developed by modification of logarithmic spiral equation. In this equation a =
2×sign×U(0, 1)× (1− Iter

TI
) and θ = sin(Iter). The step size is used to provide

distance to the best individual during the search process.

4 Experimental results and discussion

The performance of newly developed variant (P3DE) evaluated over thirteen
unbiased standard problems and analysed here in terms of precision, efficacy and
trustworthiness. A set of 12 mathematical optimization problems with diverse
degree of complexity are selected to confirm the proficiency of the planned P3DE
algorithm. All the selected functions are continuous in nature. These problems
are minimization problems and solutions of the most of the functions does not
exists on the origin, diagonal and axis.

4.1 Experimental setting

In order to check the performance of P3DE, initial population (N) was taken
50 and number of iterations (itr) taken as 4000. The newly developed P3DE
algorithm is compared with basic DE [25] and ABC [7] for the purpose of as-
sessment to evaluate the efficiency, robustness and reliability. Simulation results
of the newly developed P3DE algorithm and the considered algorithms are pre-
sented in terms of success rate (SR), average number of function evaluations
(AFE) and mean error (ME) as mentioned in Tables 2, 1 and 3 respectively.
Standard deviation (SD) also measured for analysis. The considered algorithms
are examined with the following experimental setting:

4.2 Results Analysis of Experiments

To evaluate the efficiency, an AFE based comparison is depicted out in Table
1. It can be easily observed from this table that the AFE of P3DE is less for
most of the functions i.e. the newly developed P3DE is converge to optima faster
than the other considered algorithms. Further, the Table 2 shows the results of
successful runs over 100 simulations. A simulation is considered successful, if the
algorithm achieves optima at the level of acceptable error. The Table 2 elucidate
that the newly developed P3DE is more reliable for most of the benchmark
functions in terms of success rate as compared to the considered algorithms. The
robustness and accuracy of the newly developed P3DE algorithm is measured
by the ME as depicted in Table 3. This table exhibits competitiveness of the
purposed algorithm in terms of accuracy for the considered Test Problems (TP).
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Table 1: Comparison based on
AFE.

TP ABC DE P3DE

Sphere Function 23218 23226 22002
Griewank Function 76412 64616 34147.5
Michalewicz 100011.18 173182.5 83717.5
Cosine Mixture 100041.88 30999.5 22303
Step function 17442.73 33200 10459
Inverted cosine wave 100010.73 178795.5 44205.5
Colville Function 99696.08 30623.5 24117
Kowalik Function 91466.63 66029 28883.5
2D Tripod function 5594.96 19454.5 6394
Shifted Griewank 100008.44 153104.5 37651.5
Meyer and Roth 25858.6 16355 4298
Sinusoidal Problem 100037.57 200050 127026.5

Table 2: Comparison of success
rate.

TP ABC DE P3DE

Sphere Function 100 100 100
Griewank Function 68 81 99
Michalewicz 0 19 64
Cosine Mixture 0 96 100
Step function 100 91 100
Inverted cosine wave 0 15 99
Colville Function 1 87 95
Kowalik Function 16 69 96
2D Tripod function 100 92 99
Shifted Griewank 0 30 100
Meyer and Roth 98 93 100
Sinusoidal Problem 0 0 65

Table 3: Comparison of mean error.
TP ABC DE P3DE

Sphere Function 7.86E-06 8.77E-06 9.06E-06
Griewank Function 4.36E-03 2.37E-03 8.30E-05
Michalewicz 6.36E+004.02E-02 1.46E-02
Cosine Mixture 2.62E+007.40E-03 8.99E-06
Step function 0.00E+003.20E-01 0.00E+00
Inverted cosine wave 6.62E+008.43E-01 5.25E-03
Colville Function 2.26E-01 6.82E-02 1.53E-02
Kowalik Function 1.90E-04 6.35E-04 1.11E-04
2D Tripod function 6.34E-05 8.01E-02 1.01E-02
Shifted Griewank 9.07E+011.29E-02 7.95E-06
Meyer and Roth 1.95E-03 1.96E-03 1.95E-03
Sinusoidal Problem 2.96E+003.58E+009.83E-02

Table 4: Comparison of AR.
TP ABC DE

Sphere Function 1.05526 1.05563
Griewank Function 2.23770 1.89226
Michalewicz 1.19462 2.06865
Cosine Mixture 4.48557 1.38992
Step function 1.66772 3.17429
Inverted cosine wave 2.26240 4.04464
Colville Function 4.13385 1.26978
Kowalik Function 3.16674 2.28604
2D Tripod function 0.87503 3.04261
Shifted Griewank 2.65616 4.06635
Meyer and Roth 6.01642 3.80525
Sinusoidal Problem 0.78753 1.57486
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4.3 Statistical Analysis

The comparison of P3DE with DE and ABC is done on the basis of AFE, SR,
and ME. The results in Tables 1, 2 and 3 show that P3DE is very effective for
all considered test problems while these problems are of different nature. After
observing these results it may be concluded that P3DE is able to balance the
process of exploitation and exploration very effectively. The boxplot [29] analysis
of AFE for P3DE, ABC and DE have been presented in Figure 2 to denote the
distribution of outcomes. It is clearly visible through the boxplots analyses of the
results as shown in Figure 2 that P3DE outperforms the considered algorithms.
While observing the boxplots of success rate, the median of P3DE is high whereas
interquartile range is low as compared to the other considered algorithms which
proves the reliability of the P3DE over the compared algorithms.
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Fig. 2: Boxplots graph for AFE

Further, a fair comparison in terms of the convergence speed is done through
AR analyses on the AFEs of the considered algorithms. The AR is calculated
by equation 6.

AR =
AFEALGO

AFEP3DE

, (6)

where, ALGO∈ {DE and ABC}. It is clear from equation 6 that the AR will be
high for the algorithm having fewer AFEs and vice-versa. The calculated AR is
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presented in Table 4. While observing the Table 4, the value of AR is more than
one for most of the function which shows that the newly developed P3DE is fast
convergent algorithm as compared to the other considered algorithms.

5 Conclusion

A new modification in DE algorithm is suggested in this paper and named as
Peregrine Preying Pattern based DE (P3DE) algorithm. The newly anticipated
strategy is inspired by a unique pattern followed by peregrine falcon while chas-
ing its prey that is depicted as logarithmic spiral. The exploration capability
of the DE algorithm is improved by the logarithmic spiral search process. To
assess the anticipated P3DE algorithm, 12 benchmark functions are selected for
experiments. Results proved that P3DE will be a better choice for optimization
problems.
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